

Atari 2600 Homebrew

Darrell Spice, Jr.

What is Homebrew?

- Games (or other software) made by hobbyists for platforms that are not typically end user programmable
- Over 100 have been released for the Atari 2600
- AtariAge has 80+ homebrew 2600 titles available, only Atari had a larger catalog of 2600 games

My Homebrew games

Finished

- Medieval Mayhem
- Space Rocks
- Stay Frosty
- Stay Frosty 2

WIP

- Frantic
- Timmy

Medieval Mayhem

Space Rocks

Stay Frosty

Stay Frosty 2

WIP - Frantic

WIP - TIMMY!

Challenges

- 128 bytes of system RAM (1/8 KB)
 PS3 has 256 MB (262,144 KB)
- no video RAM
 PS3 has 256 MB
- 4K cartridge space
- 1 MHz CPU only 27% is available for game logic

128 bytes of RAM

- 1 KB cost \$66 in 1975 when work began on Stella (code name for the Atari)
- 128 bytes = 1/8 KB, about \$8.25

No video RAM

- TIA Television Interface Adaptor is scan line based
- 2 players (sprites)
- 2 missiles
- 1 ball
- Low resolution playfield

2 Players

8 x 1 image

Sample pattern

If not changed, pattern repeats down the screen

Shapes are created by changing pattern on each scan line

Player Features

Three sizes:

Three 1x duplicates

Two 1x triplicates

2 Missiles, 1 Ball

Playfield

20 x 1 image

Playfield is repeated

or reflected

to fill width of screen

4K Cartridge

- original games were 2K
- 4K was believed to be large enough to last until the 2600's replacement hit the market
- ROM only, no Read/Write line for controlling access to RAM

27% of 1 MHz

- CPU must update TIA (scan line video chip) in real time
- Portion of program that drives TIA is known as the Kernel
- CPU must also trigger sync signal for TV

Program flow

What do you need?

- Editor
- Dasm
- Stella
- Hardware

Editor

```
\Theta \Theta \Theta
                                     timmy.asm ▼
KernelLoop:
        ; must be at cycle 73
        ; at this point the registers hold the following:
         A - graphics for player 0
         X - enable for missile 0
        ; Y - enable for missile 1 & PF0 for right side of screen
        ; PF0 and PF1 have already been updated for left side of room
        ; GRP1 (on VDEL) has been preloaded with player 1 graphics
                                   3 0 - GRP1 (on VDEL) is updated too
        sta GRP0
        lda #<DS_COLUP0
        sta COLUP0
        lda #<DS COLUP1
        sta COLUP1
        lda #<DS_COLUPF
                                  2 12
        sta COLUPF
        stx ENAM0
        sty ENAM1
        lda #<DS_EVENT_BL
                                 ; 3 26 <- late, so BALL won't have full range
        sta ENABL
        sbmi KernelEvent
                                   2 28 - 3 29 if taken
DD0rot. ctv DE0
```

A programmer's editor like jEdit is nicer http://www.jedit.org

Dasm

Assembler that converts human readable code into machine readable code

http://dasm-dillon.sourceforge.net

Stella

- Turns your computer into an Atari
- Integrated debugger makes coding easier

Hardware

- Atari 2600
- Supercharger
- Krokodile cart
- Harmony

Atari 2600

While Stella is great, it's not 100% accurate so you need to test your code on the real thing.

32 character text on Atari

32 character text on Stella

```
GRAPHICS BY NATHAN STRUM
SO™⊗SOUND EFFECTS BY BOB DeCRESCENZO
       HARMONY/HELODY AND DPC+ BY
              FRED QUIHBY
     14 DIGIT SCORE/LIVES KERNEL BY
              JEFF JOHNSON
         32 CHARACTER KERNEL BY
               SAH THOMAS
                LABEL BY
```

Starpath Supercharger

Starpath Supercharger

- Released in 1982 for \$45
- Uses audio to load programs (games were sold on cassettes)
- 6 K RAM, 2 K BIOS
- Program MAKEWAV converts ROM image to sound file

Starpath Supercharger

Krokodile Cartridge

Krokodile Cartridge

- Released in 2005 for \$99
- Uses serial port to load programs
- 512 K Flash ROM, 32 K RAM

Harmony Cartridge

Harmony Cartridge

- Released in 2009
- Still produced, sells for \$59.99 and \$79.99 http://harmony.atariage.com
- Uses SD card or USB to load programs
- 32 K Flash ROM, 8 K RAM
- 70 MHz ARM processor
- Melody variation used by AtariAge to produce stand alone games

batari Basic

- Provides a simpler way to create Atari games
- Uses a BASIC like language for game logic
- Provides a number of prebuilt Kernels

batari Basic games

How are the limited objects used to create complex games?

Space Invaders

Hunchy II

Player 1

Missile 0

Missile 1

Keystone Kapers

Sample Program

Program Layout

- Initialize DASM
- Define RAM usage
- Define Start of Cartridge
- Initialize Atari
- Main Loop
- Define End of Cartridge

Initialize DASM

```
; tell DASM type of CPU
    PROCESSOR 6502

; vcs.h contains the standard definitions
; for TIA and RIOT registers
    include vcs.h

; macro.h contains commonly used routines
    include macro.h
```

Define RAM usage

```
; define a segment for variables
; .U means uninitialized, does not end up in ROM
   SEG.U VARS
; RAM starts at $80
   ORG $80
; holds background color for first scanline of frame
BackgroundColor: ds 1 ; stored in $80
; holds playfield color for first scanline of frame
PlayfieldColor: ds 1 ; stored in $81
; holds # of scanlines left for the kernel to draw
LineCount:
         ds 1 ; stored in $82
```

Define Start of Cartridge

```
; define a segment for code
    SEG CODE

; ROM starts at $F000
    ORG $F000
```

Initialize Atari

InitSystem:

```
; CLEAN_START is a macro found in macro.h
; it sets all RAM, TIA registers
; and CPU registers to 0
    CLEAN_START

; for sample program, this sets playfield
; to output as vertical stripes
    lda #$AA
    sta PF0
    sta PF2
    lda #$55
    sta PF1
```

Main Loop

Sync Signal

```
VerticalSync:
    lda #2
    sta WSYNC
    sta VSYNC ; turn on Vertical Sync signal
    sta VBLANK ; turn on Vertical Blank signal
    lda #47
    sta TIM64T ; set timer for end of Vertical Blank
    sta WSYNC ; 1st scanline of Sync Signal
    sta WSYNC ; 2nd scanline of Sync Signal
    lda #0
    sta WSYNC ; 3rd scanline of Sync Signal
    sta VSYNC ; turn off Vertical Sync signal
```

Vertical Blank

```
VerticalBlank:
; game logic starts here
   inc BackgroundColor
   dec PlayfieldColor
   lda #199
   sta LineCount
; game logic ends here
VBwait:
   sta WSYNC
   bit TIMINT
```

Kernel

```
sta WSYNC
    lda #0
    sta VBLANK
    sta COLUBK
                        ; color first scanline black
                        ; color first scanline black
    sta COLUPF
    ldx BackgroundColor
    ldy PlayfieldColor
KernelLoop:
    sta WSYNC
    stx COLUBK
                        ; update background color
    sty COLUPF
                        ; update playfield color
    inx
                        ; change X for next scanline
    iny
                        ; change Y for next scanline
    dec LineCount
    bne KernelLoop
```

Overscan

```
OverScan:
   sta WSYNC
   lda #2
   sta VBLANK
                  ; turns video output off
   1da #23
   sta TIM64T
                ; set timer for end of Overscan
; additional game logic goes here
OSwait:
   sta WSYNC
   bit TIMINT
   bpl OSwait
              ; loop until the timer ends
   jmp VerticalSync ; start the next frame
```

Define End of Cartridge

```
; set destination of 6507 Interrupt Vectors
   ORG $FFFA
   .WORD InitSystem ; NMI
   .WORD InitSystem ; RESET
   .WORD InitSystem ; IRQ and BRK
```


Resources

Atari Age	http://www.atariage.com/
Mini dig	http://www.qotile.net/minidig/
Stella	http://stella.sourceforge.net/
Harmony	http://harmony.atariage.com/
Dasm	http://dasm-dillon.sourceforge.net/
Atari 2600 Programming	http://www.atariage.com/forums/ forum/50-atari-2600-programming/
2600 Programming for Newbies	http://www.atariage.com/forums/ forum/31-2600-programming-for-

batari Basic

batari Basic	http://bataribasic.com/
Atari Age forum	http://www.atariage.com/forums/forum/65-batari-basic/
Random Terrain	http://www.randomterrain.com/atari-2600-memories-batari-basic-commands.html
Visual bB	http://www.atariage.com/forums/topic/123849-visual- bb-1-0-a-new-ide-for-batari-basic/

Questions?

Presentation will be made available at

http://www.spiceware.org